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1 Introduction

Many years ago, Bagger and Witten [1] demonstrated that the scalar fields of matter hy-

permultiplets coupled to 4D N = 2 supergravity take their values in a 4nH-dimensional

quaternion Kähler manifoldM4nH

Q , unlike the rigid supersymmetric case where the hyper-

multiplet target spaces are hyperkähler [2]. It was also pointed out in [1] that the problem

of reduction from N = 2 to N = 1 supergravity is nontrivial. For such a reduction, it

is not sufficient to simply switch off one of the two gravitinos as well as the graviphoton.

In addition, it is also necessary to restrict the scalar fields to lie in a 2nH-dimensional

Kähler-Hodge1 submanifoldM2nH

K of the 4nH-dimensional quaternion Kähler spaceM4nH

Q .

Provided a required Kähler-Hodge submanifold M2nH

K of M4nH

Q exists and is constructed

explicitly, the supergravity reduction N = 2 → N = 1 has been worked out by Andria-

nopoli, D’Auria and Ferrara [5], building in part on the mathematical results of [6]. On

the other hand, if one is interested in embedding N = 1 matter-coupled supergravity into

an N = 2 theory, one has to ask two different questions that can be formulated as follows.

First, given a 2nH-dimensional Kähler-Hodge manifoldM2nH

K , does there exist a quaternion

Kähler manifold M4nH

Q such that M2nH

K is its submanifold? Second, if the answer to the

1This type of geometry corresponds to nonlinear couplings in N = 1 supergravity [3, 4].
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first question is “Yes,” can one develop a regular procedure to generateM4nH

Q starting from

M2nH

K ? In this paper, we will argue that a natural formalism to address these questions is

the concept of rigid projective superspace [7, 8] (see also [9] for a review) and its extension

to the case of supergravity with eight supercharges elaborated in [10, 11].

It is known that the study of quaternion Kähler manifolds is related to that of hy-

perkähler spaces with special properties. More precisely, there exists a one-to-one corre-

spondence [12] (see also [13]) between 4n-dimensional quaternion Kähler manifolds and

4(n+1)-dimensional hyperkähler spaces possessing a homothetic Killing vector, and hence

an isometric action of SU(2) rotating the complex structures. Such hyperkähler spaces,

known in the mathematics literature as “Swann spaces” and often referred to as “hy-

perkähler cones” in the physics literature, are the target spaces for rigid N = 2 super-

conformal sigma models [14, 15]. The above correspondence is natural from the point

of view of the N = 2 superconformal tensor calculus [16], or more generally within

the harmonic-superspace [17, 18] and the projective-superspace [11] approaches to four-

dimensional N = 2 matter-coupled supergravity. In the context of N = 2 supersymmetric

sigma models, the quaternion Kähler manifoldM4nH

Q associated to a 4(n + 1)-dimensional

hyperkähler coneM
4(nH+1)
H is obtained by applying the procedure elaborated in some detail

in [15] and later on applied in many publications, see, e.g., [19, 20] for an incomplete list.

In the present paper, we concentrate on deriving new hyperkähler cones with inter-

esting geometric properties. We give a new method for finding hyperkähler cones and thus

quaternion Kähler manifolds, and also demonstrate the surprising existence of a maximal

Kähler submanifold M2nH

K of the quaternion Kähler manifold M4nH

Q .

In the curved projective-superspace setting, general hypermultiplet matter couplings

to N = 2 supergravity were presented in [11] and [21]. The two families of locally super-

symmetric sigma models introduced in [11] and [21] are dual to each other. They involve

the same matter hypermultiplets, which are described in terms of nH covariant weight-zero

arctic multiplets ΥI and their smile-conjugates2 ῨĪ , but differ in their (second) conformal

compensators used.3 In the case of the model of [11], the compensators are a covariant

weight-one arctic multiplet Ξ and its smile-conjugate Ξ̆. The compensator in the model

of [21] is a covariant tensor multiplet H. In both models, the matter N = 2 superfields ΥI

and ῨĪ take their values in a Kähler manifoldM2nH

K with the Kähler potential K(ΦI , Φ̄J̄).

Our goal in this paper is to study rigid superconformal versions of the models in [11, 21]

which are obtained by retaining intact the compensator(s) but replacing the supergravity

covariant derivatives DA = (Da,D
i
α, D̄

.

α
i ) with those corresponding to a conformally flat su-

perspace. Technically the rigid superconfomal version of the sigma model in [21] is simpler

to deal with, for the tensor compensator H is shorter4 than the arctic one, Ξ. That is why

2An arctic multiplet Υ and its smile-conjugate Ῠ form a polar multiplet, according to the terminology

introduced in [22].
3As discussed in [21], the sigma-model couplings of [11] and [21] are N = 2 analogues of the well-known

matter couplings in the old minimal and the new minimal formulations for N = 1 supergravity, see [23, 24]

for reviews.
4When realized in terms of N = 1 superfields, the arctic multiplet [8] includes two physical superfields

(one chiral and one complex linear) and an infinite number of auxiliary superfields, see section 2 for more
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we will concentrate on the study of this model. Some aspects of the superconformal sigma

model derived from [11] were studied in [25] where that model was first introduced.

This paper is organized as follows. In section 2 we introduce the off-shell N = 2 super-

conformal sigma model to be studied and discuss its geometric aspects. The main thrust

of section 3 is to argue that the off-shell N = 2 superconformal symmetry of the model

can be used to convert the infinite set of algebraic auxiliary field equations into a single

second-order differential equation under given initial conditions, which is a deformation of

the geodesic equation, with the complex coordinate for CP 1 being the evolution parameter.

In section 4 we explicitly eliminate the auxiliary superfields and derive the hypermultilet

Lagrangian in terms of the physical superfields, in the case when M2nH

K is chosen to be

CPnH . Section 5 is devoted to the discussion of the results obtained. Two technical appen-

dices are also included. In appendix A we list the N = 2 superconformal transformations

of several off-shell supermultiplets and their relization in N = 1 superspace. Appendix B

contains a few results concerning the N = 2 supersymmetric sigma models on (co)tangent

bundles of Hermitian symmetric spaces.

2 The sigma model and its geometric properties

In this paper we are interested in a rigid superconformal version of the four-dimensional

N = 2 locally supersymmetric model proposed in [21]. This theory is formulated in N = 2

projective superspace [8], and therefore its action can naturally be written either in terms

of N = 2 projective superfields or in terms of the associated N = 1 superfields. We will use

both realizations in different parts of this paper, and the latter will be used to formulate

the action. It consists of two terms,

S[H(ζ),Υ(ζ)] = κST + SH, (2.1)

where κ is a constant parameter, and

ST = −

∮

dζ

2πiζ

∫

d4xd4θ H ln H , (2.2)

SH =

∮

dζ

2πiζ

∫

d4xd4θ H K
(

ΥI , ῨJ̄
)

, (2.3)

with some closed integration contours in the ζ-plane. Here H(ζ) is an O(2) multiplet [7]

(or N = 2 tensor multiplet [26])

H(ζ) =
1

ζ
ϕ + G− ζ ϕ̄ , D̄.

α
ϕ = 0 , D̄2G = 0 , Ḡ = G , (2.4)

ΥI(ζ) a set of arctic hypermultiplets [8], I = 1, . . . , nH,

ΥI(ζ) =
∞
∑

n=0

ζnΥI
n = ΦI + ζ ΣI + O(ζ2) , D̄.

α
ΦI = 0 , D̄2Σ = 0 , (2.5)

detail. On the contrary, the tensor multiplet consists of two physical superfields only.

– 3 –
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and ῨĪ(ζ) their smile-conjugates

ῨĪ(ζ) =

∞
∑

n=0

(−ζ)−n ῩĪ
n . (2.6)

The N = 1 superfields ΥI
2, ΥI

3, . . . , are complex unconstrained. Since these appear in the

action without derivatives, they are purely auxiliary degrees of freedom. The hypermulti-

plet action SH involves the Kähler potential, K(ΦI , Φ̄J̄), of a real-analytic Kähler manifold

M≡M2nH

K of complex dimension nH.

The action ST is the N = 2 projective-superspace formulation [7] of the N = 2

improved tensor multiplet model [27]. Its realization in terms of N = 1 superfields was

first developed in [28]:

ST =

∫

d4xd4θ LT(G,ϕ, ϕ̄) , LT(G,ϕ, ϕ̄) = H−G ln
(

G + H
)

, (2.7)

where

H :=
√

G2 + 4ϕϕ̄ . (2.8)

The combination G + H naturally originates, e.g., as follows:

H(ζ) =
1

2
(G + H)

(

1− ζ
2ϕ̄

G + H

)(

1 +
1

ζ

2ϕ

G + H

)

. (2.9)

The theory with action (2.1) is N = 2 superconformal provided H(ζ) transforms

as a N = 2 superconformal tensor multiplet and ΥI as a superconformal weight-zero

arctic multiplet [25]. The corresponding transformation laws are given below in eqs. (3.5a)

and (3.5b) respectively.

As discussed in [21], the theory (2.1) possesses a dual formulation obtained by dualizing

the tensor multiplet H(ζ) into an arctic multiplet Ξ(ζ) and its conjugate following the

procedure given, e.g., in [22]. The resulting hypermultiplet sigma model [25]

Sdual[Ξ(ζ),Υ(ζ)] = κ

∮

dζ

2πiζ

∫

d4xd4θ Ξ̆ Ξ exp

{

1

κ
K(Υ, Ῠ)

}

(2.10)

is N = 2 superconformal provided Ξ transforms as the superconformal weight-one arctic

multiplet, see appendix A for the corresponding transformation law. The above theory is

the rigid superconformal limit of the locally supersymmetric sigma model proposed in [11].

On the other hand, the theory with action (2.1) is the rigid superconformal version of the

locally supersymmetric sigma model proposed in [21].

As pointed out in [21], the theory (2.1) is a natural extension of the N = 1 supercon-

formal sigma model:

S[G,Φ] = −κ

∫

d4xd4θ G ln G +

∫

d4xd4θ GK(ΦI , Φ̄J̄) . (2.11)

Here the first term is proportional to the action for the N = 1 improved tensor multi-

plet [29]. The dual version of (2.11) is

Sdual[χ,Φ] = k

∫

d4xd4θ χ̄χ exp

{

1

κ
K(Φ, Φ̄)

}

, (2.12)

– 4 –
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with χ a chiral scalar superfield. As is known, the action Sdual[χ,Φ] is obtained from that

describing chiral matter in N = 1 supergravity (see, e.g., [23, 24] for reviews) by switching

off the (axial) vector gravitational superfield and keeping intact the chiral compensator χ

and its conjugate. Clearly, the superconformal sigma model (2.10) is an N = 2 extension

of (2.12).

The extended superconformal sigma model (2.1) inherits all the geometric features of

its N = 1 predecessor (2.11). The Kähler invariance of the latter,

K(Φ, Φ̄) −→ K(Φ, Φ̄) + F (Φ) + F̄ (Φ̄) (2.13)

turns into

K(Υ, Ῠ) −→ K(Υ, Ῠ) + F (Υ) + F̄ (Ῠ) (2.14)

for the model (2.1), where we have used the identity
∮

dζ

ζ

∫

d4xd4θ H F (Υ) = 0 , (2.15)

for any holomorphic function F (Φ). A holomorphic reparametrization of the Kähler man-

ifold M,

ΦI −→ f I
(

Φ
)

, (2.16)

has the following counterpart

ΥI(ζ) −→ f I
(

Υ(ζ)
)

(2.17)

in the N = 2 case. Therefore, the physical N = 1 superfields of the N = 2 arctic multiplet

ΥI(ζ)
∣

∣

∣

ζ=0
= ΦI ,

dΥI(ζ)

dζ

∣

∣

∣

ζ=0
= ΣI , (2.18)

should be regarded, respectively, as coordinates of a point in the Kähler manifold and a

tangent vector at the same point. Thus the variables (ΦI ,ΣJ) parametrize the holomor-

phic tangent bundle TM of the Kähler manifold M. This interpretation of the physical

variables of the hypermultiplet theory (2.3) coincides with that proposed in [30] for the

non-superconformal sigma model

S[Υ(ζ)] =

∮

dζ

2πiζ

∫

d4xd4θ K
(

ΥI , ῨJ̄
)

. (2.19)

which is obtained from (2.1) by “freezing” the tensor multiplet, that is by replacing H(ζ)

with its ζ-independent expectation value 〈H〉 = const.

Suppose that in the action (2.3) we have eliminated all the auxiliary superfields con-

tained in Υ and Ῠ with the aid of the corresponding algebraic equations of motion

∮

dζ

ζ
ζn H

∂K(Υ, Ῠ)

∂ΥI
=

∮

dζ

ζ
ζ−n H

∂K(Υ, Ῠ)

∂ῨĪ
= 0 . n ≥ 2 (2.20)

Let Υ∗(ζ) ≡ Υ∗(ζ; Φ, Φ̄,Σ, Σ̄) denote their unique solution subject to the initial condi-

tions (2.18)

Υ∗(0) = Φ ,
.

Υ∗(0) = Σ . (2.21)

– 5 –
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The action (2.1) then turns into

S[G,ϕ,Φ,Σ] := S[H(ζ),Υ∗(ζ)] =

∫

d4xd4θ L(G,ϕ, ϕ̄,Φ, Φ̄,Σ, Σ̄) ,

L(G,ϕ, ϕ̄,Φ, Φ̄,Σ, Σ̄) = κLT(G,ϕ, ϕ̄) + LH(G,ϕ, ϕ̄,Φ, Φ̄,Σ, Σ̄) . (2.22)

Here the tensor multiplet Lagrangian is given by eq. (2.7). In accordance with the gen-

eralized Legendre transform procedure [8], we should dualize the real linear superfield G

into a chiral scalar χ and its conjugate χ̄, and further dualize the complex linear tangent

variables ΣI and their conjugates Σ̄Ī into chiral one-forms ΨI and their conjugates Ψ̄Ī ,

D̄.

αχ = D̄.

αΨI = 0. This results in

S[G,ϕ,Φ,Σ] −→ S[χ,ϕ,Φ,Ψ] =

∫

d4xd4θH
(

χ, χ̄, ϕ, ϕ̄,ΦI , Φ̄J̄ ,ΨI , Ψ̄J̄

)

. (2.23)

We thus have the following striking situation: The target space of this sigma model is a hy-

perkähler manifold, HKC4(nH+1)(M), of real dimension 4nH +4. Since the sigma model is

N = 2 superconformal, HKC4(nH+1)(M) is a hyperkähler cone in the sense of [14, 15]. The

Lagrangian H in (2.23) is the hyperkähler potential for HKC4(nH+1)(M). Note that the

variables (ΦI ,ΨJ) parametrize the holomorphic cotangent bundle T ∗M of the Kähler man-

ifold M =M2nH

K . As mentioned in the introduction, there exists a one-to-one correspon-

dence between 4n-dimensional quaternion Kähler spaces (QK) and 4(n + 1)-dimensional

hyperkähler cones (HKC) [12, 13]. In our case HKC4(nH+1)(M) ←→ QK4nH(M). The

Kähler manifoldM2nH

K is embedded into QK4nH(M).

3 Superconformal invariance and the auxiliary field equations

When dealing with the N = 2 off-shell superconformal sigma-model (2.1), the main tech-

nical challenge is to explicitly eliminate the auxiliary superfields ΥI
2, ΥI

3, . . . , by means of

solving the corresponding equations of motion (2.20). This section is devoted to a general

analysis of the problem.

3.1 Superconformal invariance

Both actions (2.2) and (2.3) are N = 2 superconformal. To write down the superconformal

transformations of H(ζ), Υ(ζ) and Ῠ(ζ), it is useful to lift these multiplets to N = 2

superspace R
4|8 parametrized by coordinates zA = (xa, θα

i , θ̄i
.

α
), where i = 1, 2. In the

N = 2 setting, each of H(ζ), Υ(ζ) and Ῠ(ζ) is a projective multiplet. In general, with

respect to the N = 2 Poincaré supersymmetry, a projective multiplet Q(ζ) is determined

by the two conditions [8]:

(i) it is characterized by two fixed integers p, q (of which p may be equal to −∞ and q

to +∞) such that

Q(z, ζ) =

q
∑

p

Qn(z)ζn ; (3.1)

– 6 –
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(ii) it is subject to the constraints

Dα(ζ)Q(ζ) = D̄.

α
(ζ)Q(ζ) = 0 , (3.2)

where

Dα(ζ) := ζiDαi , D̄.

α := ζiD̄.

αi , ζi := (1, ζ) , (3.3)

where DA = (∂a,D
i
α, D̄

.

α
i ) are the N = 2 flat covariant derivatives. With respect

to the N = 2 superconformal group, the admissible transformation laws prove to

depend on the parameters p and q in (3.1) as shown in [25].

The following remark is needed here. It follows from the constraints (3.2) that the

dependence of Q(x, θi, θ̄
i, ζ) on the Grassmann variables θα

2 and θ̄
2
.

α
is uniquely determined

in terms of its dependence on θα
1 ≡ θα and θ̄

1
.

α
≡ θ̄.

α
. In other words, the projective

superfields depend effectively on half the Grassmann variables which can be chosen to be

the spinor coordinates of N = 1 superspace. In other words, no information is lost if we

replace Q(ζ) by its N = 1 projection Q(ζ)| defined as

U | = U(x, θi, θ̄
i)
∣

∣

∣

θ2=θ̄2=0
, (3.4)

for any N = 2 superfield U(x, θi, θ̄
i).

The actions (2.2) and (2.3) are invariant under the following N = 2 superconformal

transformations of H, Υ and Ῠ [25]:

ζ δH = −
(

ξ + λ++(ζ) ∂ζ

)

(ζH)− 2Σ(ζ) ζH , (3.5a)

δΥI = −
(

ξ + λ++(ζ) ∂ζ

)

ΥI , δῨĪ = −
(

ξ + λ++(ζ) ∂ζ

)

ῨĪ . (3.5b)

Here ξ is a N = 2 superconformal Killing vector,

ξ = ξ = ξA(z)DA = ξa(z) ∂a + ξα
i (z)Di

α + ξ̄i
.

α
(z) D̄

.

α
i , (3.6)

with the master property

D̄
.

α
i Ψ = 0 −→ D̄

.

α
i (ξ Ψ) = 0 , (3.7)

for any chiral superfield Ψ. The superconformal parameters λ++(ζ) and Σ(ζ) appearing

in (3.5a) and (3.5b) have the form

λ++(ζ) = = λ11 ζ2 − 2λ12 ζ + λ22 , Σ(ζ) = −λ11 ζ + λ12 + σ + σ̄ (3.8)

in terms of the descendants σ and λij of ξ defined as

σ =
1

4
D̄
.

α
i ξ̄i

.

α
, D̄

.

α
i σ = 0

λj
i =

1

2

(

Di
αξα

j −
1

2
δi
jD

k
αξα

k

)

, λij = λji , λij = λij . (3.9)

– 7 –
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It should be remarked that these descendants originate as follows

[ξ , Di
α] = −(Di

αξβ
j )Dj

β = ωα
βDi

β − σ̄ Di
α − λj

i Dj
α −→ D̄

.

α
i ξβ

j = 0 , (3.10)

where

ωαβ = −
1

2
Di

(αξβ)i , D̄
.

α
i ωαβ = 0 . (3.11)

See refs. [25, 31–33] for more detail about superconformal transformations in

N = 2 superspace.

The superconformal transformation of H(ζ), eq. (3.5a), proves to be uniquely deter-

mined by the constraints obeyed by this multiplet, Dα(ζ)H(ζ) = D̄.

α
(ζ)H(ζ) = 0, and by

its explicit dependence of ζ given by (2.4). Eq. (3.5b) means that ΥI(ζ) is a weight-zero

arctic multiplet. The superconformal transformations of the weight-n arctic and antarctic

multiplets are given by eqs. (A.2) and (A.3) respectively.

Consider the model (2.10) dual to (2.1). As discussed in section 2, it is N = 2

superconformal invariance provided ΥI and Ξ transform as the weight-zero and weight-

one arctic multiplets, respectively, with the latter transformation law given by eq. (A.2)

with n = 1.

It is of interest to analyze the superconformal properties of the auxiliary field equa-

tions (2.20). In complete analogy with the case H = 1 [9, 34], these equations imply that

ΩI(ζ) := ζ H
∂K(Υ, Ῠ)

∂ΥI
(3.12)

has no poles in ζ and therefore can be represented by a Taylor series

ΩI(ζ) =
∞
∑

n=0

ζnΩn I . (3.13)

This superfield becomes an arctic multiplet on the full mass shell when the equations of

motion for ΦI and ΣI are imposed as well.

Let us promote the superfields H, Υ and Ῠ in (3.12) to N = 2 projective superfields.

Then, using the transformation laws (3.5a) and (3.5b), we observe that the composite (3.12)

transforms as

δΩI = −
(

ξ + λ++(ζ) ∂ζ

)

ΩI − 2Σ(ζ)ΩI . (3.14)

It is a simple exercise to check that this transformation law preserves the functional form

of ΩI given in (3.13). Therefore, the auxiliary field equations (2.20), or equivalently (3.13),

are N = 2 superconformal. On the full mass shell, eq. (3.14) tells us that ΩI is a weight-two

superconformal arctic multiplet.

We wish to convert the algebraic auxiliary field equations (2.20) into an equivalent

second-order ordinary differential equation obeyed by Υ(ζ), with ζ the evolution parameter.

This is certainly possible in the case H = 1, as has been shown in [34, 35] for the Hermitian

symmetric spaces, and in [25] for general Kähler spaces. In the case of an arbitrary N = 2

tensor multiplet H(ζ), let us proceed to derive such an equation for a simplest Kähler

potential.
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3.2 Quadratic Kähler potential

The auxiliary field equations (2.20) can be explicitly solved in the case of a flat Kähler

target space described by the potential5

K(Φ, Φ̄) = Φ†Φ = δIJ̄ ΦIΦ̄J̄ . (3.15)

Then, using eq. (2.9) we find

H K(Υ, Ῠ) = H(ζ)ῨĪ(ζ)ΥI(ζ) =
1

2
(G + H)ῨĪ(ζ)ΥI(ζ) , (3.16)

where

ΥI(ζ) :=

(

1− ζ
2ϕ̄

G + H

)

ΥI(ζ) =

∞
∑

n=0

ζnΥI
n . (3.17)

The new superfields, ΥI(ζ), are not arctic, for the components

ΥI
1 = ΣI −

2ϕ̄

G + H
ΦI (3.18)

obey a modified linear constraint. The new auxiliary superfields ΥI
2,Υ

I
3, . . . , can be im-

mediately eliminated. As a result, the Lagrangian corresponding to the hypermultiplet

action (2.3) with K = K becomes

LH =
1

2
(G + H)

{

Φ̄ĪΦI −
(

Σ̄Ī −
2ϕ

G + H
Φ̄Ī

)(

ΣI −
2ϕ̄

G + H
ΦI

)}

. (3.19)

In terms of the Kähler potential K(Φ, Φ̄), this Lagrangian can equivalently be rewritten in

the form:

LH = GK + ϕKIΣ
I + ϕ̄KJ̄ Σ̄J̄ −

1

2
(G + H)KIJ̄ΣIΣ̄J̄ . (3.20)

Let ΥI
∗(ζ) denote the unique solution to the algebraic auxiliary field equations under

the initial conditions (2.21). It has the form

ΥI
∗(ζ) = ΦI +

ζ

1− Λ̄ζ
ΣI , (3.21)

where

Λ :=
2ϕ

G + H
. (3.22)

It is further a solution to the following differential equation:

d2ΥI(ζ)

dζ2
− 2

Λ̄

1− Λ̄ζ

dΥI(ζ)

dζ
= 0 . (3.23)

It is instructive to check that equation (3.23) is superconformal. Introduce the

following superfield:

ΠI :=
d2ΥI(ζ)

dζ2
− 2

Λ̄

1− Λ̄ζ

dΥI(ζ)

dζ
. (3.24)

5Our consideration can be trivially generalized to the case of an indefinite metric in (3.15), δIJ̄ → ηIJ̄ .
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We are going to demonstrate that its superconformal transformation is

δΠI = −

(

ξ + λ++ ∂ζ + 2
(

∂ζλ
++
)

)

ΠI . (3.25)

Using eq. (3.5b) gives

d

dζ
δΥI = −

(

ξ + λ++ ∂ζ +
(

∂ζλ
++
)

)

d

dζ
δΥI , (3.26a)

d2

dζ2
δΥI = −

(

ξ + λ++ ∂ζ + 2
(

∂ζλ
++
)

)

d2

dζ2
δΥI −

(

∂2
ζ λ++

) d

dζ
δΥI . (3.26b)

Next, making use of eq. (3.5a) allows us to read off the superconformal transformations of

the components of H(ζ):

δG = −ξG− 2(σ + σ̄)G + 2λ22ϕ̄ + 2λ11ϕ , (3.27a)

δϕ = −ξϕ− 2(σ + σ̄)ϕ− λ22G− 2λ12ϕ , (3.27b)

δϕ̄ = −ξϕ̄− 2(σ + σ̄)ϕ̄− λ11G + 2λ12ϕ . (3.27c)

These results immediately lead to

δH = −ξH− 2(σ + σ̄)H , (3.28)

as well as to

δΛ = −ξΛ− λ22 − 2λ12Λ− λ11Λ2 , δΛ̄ = −ξΛ̄− λ11 + 2λ12Λ̄− λ22(Λ̄)2 . (3.29)

Making use of the results obtained, we check that

(

∂2
ζ λ++

)

+

{

λ++∂ζ +
(

∂ζλ
++
)

}

2Λ̄

1− Λ̄ζ
+

2(δΛ̄ + ξΛ̄)

(1− Λ̄ζ)2
= 0 . (3.30)

The above identities indeed justify the superconformal transformation law (3.25), and hence

the fact that the differential equation (3.23) is superconformal.

It should be pointed out that the hypermultiplet model (2.3) with Kähler poten-

tial (3.15) possesses a dual off-shell formulation obtained by dualizing each6 polar mul-

tiplet, ΥI and ῨĪ , into a real O(2) multiplet ηI , with I = 1, . . . , nH.7 The dual formulation

is described by the following N = 2 superconformal action:

SH,dual = −

∮

dζ

2πiζ

∫

d4xd4θ
ηIηI

2H
. (3.31)

Of the global U(nH) symmetry of the original hypermultiplet action, only its subgroup

O(nH) is manifestly realized in the dual formulation, while the other symmetries emerge

as duality transformations. In the same vein, of the 2nH Abelian symmetries

δH(ζ) = 0 , δΥI(ζ) = cI = const (3.32)

6The other option is to dualize only a subset of the nH polar multiplets.
7As is well-known [28], this is possible only if the model possesses an isometry so that it does not depend

on the phase of Υ.
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of the original hypermultiplet model, only nH (Peccei-Quinn-type) symmetries are mani-

festly realized in the dual formulation:

δH(ζ) = 0 , δηI(ζ) = H(ζ) aI , aI = aI = const . (3.33)

Modulo sign, the sigma model (3.31) with nH = 1 is known to define the hyperkähler cone

corresponding to the classical universal hypermultiplet [15, 36].

3.3 Modified geodesic equation

If the Kähler space is not flat, the differential equation (3.23) is no-longer equivalent to

the auxiliary field equations (2.20). Guided by the experience gained in the case H =

1 [25, 34, 35, 37] we should look for a generalization of eq. (3.23) of the form:

ΠI = 0 , (3.34)

where

ΠI := ΠI + ΓI
JK

(

Υ(ζ), Φ̄

)

dΥJ(ζ)

dζ

dΥK(ζ)

dζ
+ . . .

≡
d2ΥI(ζ)

dζ2
−

2Λ̄

1− Λ̄ζ

dΥI(ζ)

dζ
+ ΓI

JK

(

Υ(ζ), Φ̄

)

dΥJ(ζ)

dζ

dΥK(ζ)

dζ
+ ∆ΠI . (3.35)

Here the term containing the Christoffel symbol ΓI
JK is required to ensure the correct

transformation of ΠI under holomorphic reparametrizations (2.17). It can be argued that

the last term in (3.35) must depend on the Kähler potential only via the corresponding

Kähler metric, the Riemann tensor and its covariant derivatives. The superfield ΠI should

be chosen such that

(i) in the case when H = 1 and the Kähler manifold M2nH

K is Hermitian symmetric,

eq. (3.34) should reduce to the geodesic equation (B.2);

(ii) the N = 2 superconformal transformation of ΠI should be

δΠI = −

(

ξ + λ++ ∂ζ + 2
(

∂ζλ
++
)

)

ΠI . (3.36)

It turns out that the above requirements allow one, in principle, to reconstruct ∆ΠI

in (3.35) step by step in perturbation theory. As a first step, varying the right-hand side

of (3.35) gives

δΠI = −
(

ξ + λ++ ∂ζ + 2
(

∂ζλ
++
)

)

ΠI

−λ11 RJL̄K
I
(

Υ(ζ), Φ̄
)

Σ̄L̄ dΥJ(ζ)

dζ

dΥK(ζ)

dζ
+ . . . (3.37)

To derive this and some other relations below, one has to use the superconformal transfor-

mations of Φ, Σ and their conjugates:

δΦI = −ξΦI − λ22ΣI , (3.38a)

δΦ̄Ī = −ξΦ̄Ī − λ11Σ̄Ī , (3.38b)

δΣI = −ξΣI + 2λ12ΣI − λ22ΥI
2 , (3.38c)

δΣ̄Ī = −ξΣ̄Ī − 2λ12Σ̄Ī − λ11ῩĪ
2 . (3.38d)
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These relations follow from (3.5b). In (3.38c) and (3.38d), ΥI
2 and its conjugate should be

expressed in terms of the physical superfields ΦI , ΣI and their conjugates, in accordance

with (3.34).

To cancel the variation in the second line of (3.37), it can be shown that the last term

in (3.35) should have the form:

∆ΠI = −
Λ̄

1 + ΛΛ̄
RJL̄K

I
(

Υ(ζ), Φ̄
)

Σ̄L̄ dΥJ(ζ)

dζ

dΥK(ζ)

dζ
+ O(R2,∇R) . (3.39)

Here O(R2,∇R) denotes terms of second and higher orders in the target space curvature,

or terms containing covariant derivatives of the target space curvature.

3.4 Leading contributions to the hypermultiplet Lagrangian

The results obtained in the previous subsection allow us to restore several leading terms in

the hypermultiplet Lagrangian LH(G,ϕ, ϕ̄,Φ, Φ̄,Σ, Σ̄) appearing in (2.22). Upon elimina-

tion of the auxiliary superfields, we find

ΥI
2 = Λ̄ΣI −

1

2
ΓI

JKΣJΣK +
1

2

Λ̄

1 + ΛΛ̄
RJL̄K

I ΣJΣKΣ̄L̄ + O(Σ4) , (3.40)

where O(Σ4) denotes all the terms of fourth and higher powers in Σ and Σ̄.

We now project the dynamical superfields to N = 1 superspace and consider only the

second Q-supersymmetry transformation [8, 28]:

δϕ = ǫD G , (3.41a)

δG = = −ǫD ϕ− ǫD ϕ̄ , (3.41b)

δΦI = ǫD ΣI , (3.41c)

δΣI = −ǫD ΦI + ǫD ΥI
2 , (3.41d)

where ΥI
2 has to be expressed in terms of the dynamical superfields as in (3.40). These

transformations follow from the relations (A.13a), (A.13b) and (A.16a), (A.16b) by setting

ρα = ǫα = const. Requiring the hypermultiplet action to possess this invariance, and also

taking into account the fact that

LH(G,ϕ, ϕ̄,Φ, Φ̄,Σ, Σ̄) = GK + O(Σ) ,

one can show that

LH = GK + ϕKIΣ
I + ϕ̄KJ̄ Σ̄J̄ −

1

2
(G + H)gIJ̄ΣIΣ̄J̄ + O(Σ4) . (3.42)

It can readily be seen that the first three terms generate Kähler-invariant contributions to

the action. The other terms in LH prove to involve the Kähler potential ony in the form

of the Kähler metric gIJ̄ , the corresponding Riemann curvature RIJ̄KL̄ and its covariant

derivatives.

– 12 –



J
H
E
P
0
9
(
2
0
0
9
)
1
1
9

4 Complex projective space

If the Kähler potential K(Φ, Φ̄) in (2.3) corresponds to a generic Kähler manifold, it is not

possible to obtain a closed-form expression for the modified geodesic equation (3.34), (3.35)

which is equivalent to the auxiliary field equations (2.20). In the non-superconformal case

H = 1, this equation is known exactly for arbitrary Hermitian symmetric spaces [34, 35]

and is given by eq. (B.2). Its extension to the superconformal case is quite nontrivial,

due to the presence of an infinite number of curvature-dependent terms in (3.35). At the

moment, we are not able to derive the equation (3.34), (3.35) even for arbitrary Hermitian

symmetric spaces. However, below we will work out explicitly one important example —

the complex projective space M = CPnH = SU(nH + 1)/SU(nH) × U(1). We believe our

consideration for CPnH can naturally be generalized to the case of arbitrary Hermitian

symmetric spaces.

Using standard inhomogeneous coordinates for CPnH , the Kähler potential8 and the

metric are

K(Φ, Φ̄) = r2 ln

(

1 +
1

r2
ΦLΦL

)

, gIJ̄(Φ, Φ̄) =
r2δIJ

r2 + ΦLΦL
−

r2ΦIΦJ

(r2 + ΦLΦL)2
, (4.1)

where I, J̄ = 1, . . . , nH and r2 = const. The Riemann curvature of CPnH is known to be

RI1J̄1I2J̄2
:= KI1J̄1I2J̄2

− gMN̄ΓM
I1I2

Γ̄N̄
J̄1J̄2

= −
1

r2

{

gI1J̄1
gI2J̄2

+ gI1J̄2
gI2J̄1

}

. (4.2)

This implies

ΣI1Σ̄J̄1ΣI2 RI1J̄1I2J̄2
= −

2

r2
gI2J̄2

ΣI2|Σ|2 , (4.3)

where

|Σ|2 := gIJ̄ (Φ, Φ̄)ΣIΣ̄J̄ . (4.4)

As before, let Υ∗(ζ) ≡ Υ∗(ζ; Φ, Φ̄,Σ, Σ̄) denote the unique solution of the auxiliary

field equations (2.20) subject to the initial conditions (2.21). Then, the action (2.1) can be

brought to the form (2.22), for some Lagrangian LH. Instead of looking directly for Υ∗(ζ),

we will try to determine the Lagrangian LH by making use of considerations based on

extended supersymmetry, as a generalization of the approaches developed earlier in [38, 39]

for the non-superconformal case H = 1.

For LH we choose an ansatz of the form:

LH(G,ϕ, ϕ̄,Φ, Φ̄,Σ, Σ̄) = GK + ϕKIΣ
I + ϕ̄KJ̄ Σ̄J̄ + L ,

L(G,ϕ, ϕ̄,Φ, Φ̄,Σ, Σ̄) ≡ L
(

|Σ|2
)

=
∞
∑

n=1

Ln|Σ|
2n , Ln ≡ Ln(G,ϕ, ϕ̄) , (4.5)

8Modulo an irrelevant constant, the Kähler potential K(Φ, Φ̄) reduces to (3.15) in the limit r → ∞.
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where the first three terms in the expression for LH agree with (3.42). The general structure

of L given follows from the fact (4.4) is the only independent U(n)-invariant that may be

constructed in terms of Σs and Σ̄s. At the moment, we only know that

L1 = −
1

2
(G + H) . (4.6)

Our goal is to determine the other Taylor coefficients in (4.5), L2, L3, . . . , using extended

supersymmetry.

Our strategy below will consist in trying to determine L
(

|Σ|2
)

by requiring the action

SH =

∫

d4xd4θ LH(G,ϕ, ϕ̄,Φ, Φ̄,Σ, Σ̄) (4.7)

to be invariant under the second Q-supersymmetry transformation (3.41a)–(3.41d), with

ΥI
2 currently an unknown function of the physical superfields which has to be determined.

We choose the following ansatz for ΥI
2:

ΥI
2 = −

1

2
ΓI

JKΣJΣK + ΣI
∞
∑

n=0

cn|Σ|
2n , cn ≡ cn(G,ϕ, ϕ̄) . (4.8)

At the moment, we only know that

c0 = Λ̄ =
2ϕ̄

G + H
, (4.9)

in accordance with (3.40). Our goal is to determine the other Taylor coefficients in (4.8),

c1, c2, . . . , using extended supersymmetry.

Let us vary the action with respect to the second Q-supersymmetry transforma-

tion (3.41a)–(3.41d), keep the ǭ-dependent terms only, and analyze what conditions are

necessary for SH to be invariant. The variation δǭSH involves two types of terms contain-

ing even and odd powers of Σs and Σ̄s respectively. The requirement that all even terms

vanish can be shown to tbe equivalent to the following two conditions:

n−1
∑

k=0

(n− k)ckLn−k = 0 , n ≥ 2 (4.10)

δǭLn +

n
∑

k=1

kLkǫDcn−k −
1

n

n
∑

k=1

k(n − k)ǫD
(

Lkcn−k

)

= 0 . (4.11)

The requirement that all odd terms vanish can be shown to be equivalent to the follow-

ing condition:

(n + 1)Ln+1 =
n

r2
Ln − ϕcn , n ≥ 1 . (4.12)

Before continuing the general analysis, let us briefly pause and make a simple check of

equation (4.11), by considering the choice n = 1, that is

δǭL1 + L1ǫDc0 = 0 . (4.13)
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Since

δǭ(G + H) = −(G + H)ǫDΛ̄ , (4.14)

the relations (4.6) and (4.9) imply that (4.13) is identically satisfied.

Using the relations (4.10) and (4.12), we can derive a recursion relation to determine

the coefficients Ln. It is

Ln =
1

nH

{ n−2
∑

k=1

(n− k)(k + 1)Ln−kLk+1 −
1

r2

n−1
∑

k=1

(n− k)kLn−kLk

}

, n ≥ 3 . (4.15)

For n = 2, only the second term on the right contributes, hence

L2 = −
1

2r2H
(L1)

2 = −
1

8r2

(G + H)2

H
. (4.16)

Making use of eq. (4.15) allows one to obtain an algebraic equation obeyed by

L′(x) =

∞
∑

n=1

nLnxn−1 .

The equation is

(

1− x/r2
)[

L′(x)
]2

+ GL′(x)−
1

4
(H2 −G2) = 0 . (4.17)

We have to choose the following solution of the quadratic equation obtained:

L′(x) = −
1

2

G

1− x/r2
−

1

2

√

G2 + (H2 −G2)(1− x/r2)

1− x/r2
, (4.18)

for it possesses the right functional form in the limit H → G. Now, the problem of

computing L(x) amounts to doing an ordinary integral. The result is as follows:

L(x) = −r2
{

H−G ln
(

G + H
)

}

+ r2
√

G2 + (H2 −G2)(1− |Σ|2/r2)

+r2G ln
1− |Σ|2/r2

√

G2 + (H2 −G2)(1 − |Σ|2/r2) + G
. (4.19)

It can be seen that

lim
H→G

L(x) = Gr2 ln

(

1−
x

r2

)

(4.20)

which agrees with [35, 37, 38, 40].

Using the relations (4.12), we can now compute all the coefficients cn, and hence the

function c(x) appearing in (4.8). The latter is

c(x) :=
∞
∑

n=0

cnxn = 2ϕ̄
1− x/r2

√

G2 + (H2 −G2)(1− x/r2) + G
. (4.21)

So far we have determined L(x) and c(x) by using the relations (4.10) and (4.12). It

still remains to be checked that eq. (4.11) is also satisfied. Instead of enjoying such an

exercise, we choose a different course.

– 15 –



J
H
E
P
0
9
(
2
0
0
9
)
1
1
9

In accordance with (4.19), upon elimination of the auxiliary superfields, the hypermul-

tiplet Lagrangian is

LH = GK(Φ, Φ̄) + ϕKI(Φ, Φ̄)ΣI + ϕ̄KJ̄(Φ, Φ̄)Σ̄J̄ − r2
{

H−G ln
(

G + H
)

}

(4.22)

+r2

{

G ln
1− |Σ|2/r2

√

G2 + 4ϕ̄ϕ(1 − |Σ|2/r2) + G
+
√

G2 + 4ϕ̄ϕ(1− |Σ|2/r2)

}

.

Consider the second Q-supersymmetry transformation (3.41a)–(3.41d), where

ΥI
2 = −

1

2
ΓI

JKΣJΣK + 2ΣI ϕ̄
1− |Σ|2/r2

√

G2 + 4ϕ̄ϕ(1− |Σ|2/r2) + G
. (4.23)

It is an instructive, albeit time consuming, exercise to check explicitly that the action (4.7),

with LH given by (4.22), is invariant under this transformation. This implies that all of

the equations (4.11) are identically satisfied.

One can readily check that the action (4.7) generated by the Lagrangian LH, eq. (4.22),

is invariant under the N = 1 superconformal transformation (A.12), (A.15) and the

shadow chiral rotation (A.14), (A.17), where n should be set to zero for both transfor-

mations. We leave it as an exercise for the reader to check that the action is also invariant

under arbitrary extended superconformal transformations (A.13a), (A.13b) with n = 0

and (A.16a), (A.16b).

The hypermultiplet model (4.7), with LH given by (4.22), possesses a dual formulation

obtained by dualizing the complex linear tangent variables ΣI and their conjugates Σ̄Ī into

chiral one-forms ΨI and their conjugates Ψ̄Ī , D̄.

α
ΨI = 0. As usual, one first replaces the

action with a first order one,

S =

∫

d4xd4θ

{

LH(G,ϕ, ϕ̄,Φ, Φ̄,Σ, Σ̄) + ΣIΨI + Σ̄J̄Ψ̄J̄

}

, (4.24)

where ΣI and Σ̄J̄ are chosen to be complex unconstrained. Next, one eliminates these

superfields with the aid of their algebraic equations of motions, ending up with the

dual Lagrangian:

L
(dual)
H = GK(Φ, Φ̄)− r2

{

H−G ln
(

G + H
)

}

(4.25)

+r2

{

√

H2 + 4|Ψ + ϕ∇K|2/r2 −G ln

(

√

H2 + 4|Ψ + ϕ∇K|2/r2 + G

)}

,

where

|Ψ + ϕ∇K|2 := gIJ̄
(

ΨI + ϕKI(Φ, Φ̄)
)(

Ψ̄J̄ + ϕ̄KJ̄(Φ, Φ̄)
)

. (4.26)

Under the Kähler transformation (2.13), the chiral one-form ΨI changes as

ΨI −→ ΨI − ϕFI(Φ) , (4.27)

and this transformation is clearly consistent with the chirality of ΨI . In the limit G = 1

and ϕ = 0, the Lagrangian (4.25) reduces to the hyperkähler potential for the cotangent
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bundle of CPnH [41], see [28, 40] and references therein for alternative supersymmetric

techniques to derive the Calabi metric.

To conclude this section, we should mention that the above consideration for the

complex projective spaceM = SU(nH +1)/SU(nH)×U(1) can be immediately generalized

to the non-compact space SU(nH, 1)/SU(nH)×U(1) characterized by the Kähler potential

K(Φ, Φ̄) = −r2 ln

(

1−
1

r2
ΦLΦL

)

. (4.28)

This generalization amounts to replacing everywhere r2 −→ −r2.

5 Discussion

In section 4, we studied the dynamical system (2.1) for the case when the Kähler potential

has the form (4.1) and corresponds to CPnH . Some aspects of this theory are more trans-

parent within its dual formulation (2.10) in which the action, modulo a trivial rescaling of

ΥI , is

Sdual = κ

∮

dζ

2πiζ

∫

d4xd4θ Ξ̆ Ξ
(

1 + ΥIῨĪ
)m

, m :=
r2

κ
. (5.1)

This formulation is useful to see that the parameter m should be an integer (compare

with [3]). It is suficient to consider the case of CP 1. Then Υ is the inhomogeneous

complex coordinate in one of the two standard charts for CP 1 = C∪{∞}, say in the chart

C. Let Υ′ be the complex coordinate in the second chart, C
∗ ∪ {∞}, with C

∗ := C− {0},

such that the transition function is Υ′ = 1/Υ. Of course, the action (5.1) for CP 1 should

be well-defined in both charts. In the second chart, it reads

Sdual = κ

∮

dζ

2πiζ

∫

d4xd4θ Ξ̆′ Ξ′
(

1 + Υ′ Ῠ′
)m

, Ξ′ = Ξ Υm . (5.2)

In order for the compensator Ξ′ to be well-defined on C
∗, the parameter m should be an

integer. In the general case of CPnH, similar arguments show that the varibles ΥI and Ξ

parametrize a holomorphic line bundle over CPnH.

More generally, the arctic variables ΥI and Ξ in the model (2.10) should parametrize

a holomorphic line bundle over a Kähler-Hodge manifoldM2nH

K with Kähler potential

K(Φ, Φ̄) =
1

κ
K(Φ, Φ̄) , (5.3)

in order for the action to be well-defined. To justify this claim, it suffices to reiter-

ate the discussion of Kähler-Hodge geometry given in [42] (see also [43] for a recent re-

view). Let ω = i∂∂̄K be the Kähler two-form of M2nH

K . The Kähler manifold is Hodge if

ω/2π ∈ H2(M2nH

K , Z), where H2(M2nH

K , Z) denotes the second cohomology group ofM2nH

K

with integer coefficients. Then, one can associate with ω a holomorphic line bundle with

connection for which ω is the field strength. The Kähler potential K can be chosen such

that h := eK is a Hermitian fiber metric on the line bundle, ||χ||2 = hχχ̄. Given a nowhere
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vanishing local section χ of the line bundle, the Kähler potential can be given, in accordance

with [42], as K = ln ||χ||2. This geometric picture extends to the N = 2 supersymmetric

case by replacing ΦI → ΥI and χ → Ξ. The crucial point is that the action (2.10) is

globally well-defined in spite of the fact that the Lagrangian is given in terms of local data.

Our discussion above shows that the dual formulation (2.10) with arctic compensator

requires Kähler-Hodge geometry. An interesting question is: Can we see the same geometry

within the formulation (2.1) with tensor compensator? The answer is “Yes” provided the

action (2.1) is rewritten in the following equivalent form:

S[H(ζ),Υ(ζ)] = κ

∮

dζ

2πiζ

∫

d4xd4θ H ln
eK(Υ,Ῠ) Ξ Ξ̆

H
. (5.4)

Here Ξ(ζ) is a weight-one arctic multiplet, and Ξ̆(ζ) its smile-conjugate. These multiplets

are purely gauge degrees of freedom, for (5.4) is invariant under gauge transformations of

the form:

Ξ −→ Ξ′ = eρ Ξ , (5.5)

with ρ an arbitrary weight-zero arctic multiplet. The gauge invariance follows from

the identity
∮

dζ

2πiζ

∫

d4xd4θ H ρ = 0 . (5.6)

Unlike the original action (2.1), its reformulation (5.4) is manifestly N = 2 superconfor-

mal.9 The arctic variables ΥI and Ξ in (5.4) parametrize the holomorphic line bundle over

M2nH

K introduced earlier.

It should be pointed out that no quantization condition occurs in the case of non-

conformal N = 2 sigma model (2.19). The Kähler potential in (2.19) is required to be real

analytic but is otherwise arbitrary. The point is that the component Lagrangian can be

defined as (compare with [44])

Lcomponent =
1

16
DαD̄2Dα

∮

dζ

2πiζ
K
(

Υ, Ῠ
)

=
1

16
D̄.

α
D2D̄

.

α

∮

dζ

2πiζ
K
(

Υ, Ῠ
)

, (5.7)

and it is manifestly invariant under Kähler transformation (2.14).

Let us return to the caseM2nH

K = CPnH discussed at the beginning of this section. As

follows from (5.1), the choice

r2 = κ (5.8)

corresponds to a free theory, and this property should also be seen within the original

model (2.1). Indeed, for this particular choice of parameters the fourth term in the ex-

pression (4.22) for LH (or the second term in the expression (4.25) for the dual Lagrangian

L
(dual)
H ) cancels against κLT, with LT the tensor multiplet Lagrangian, eq. (2.7). Now, in

the theory with Lagrangian

r2LT + L
(dual)
H = r2 G

{

ln

(

1 +
1

r2
Φ†Φ

)

− ln

(

√

H2 + 4|Ψ + ϕ∇K|2/r2 + G

)}

+r2
√

H2 + 4|Ψ + ϕ∇K|2/r2 , (5.9)

9The action (5.4) is the rigid superspace version of a locally supersymmetric action introduced in [21].
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one can explicitly dualize the real linear superfield G into a chiral scalar χ and its conjugate.

Modulo a field redefinition, the action obtained describes nH+1 free hypermultiplets. Thus,

in spite of the fact that the above Lagrangian is nonlinear, it generates free dynamics. This

is analogous to the situation with the improved tensor multiplet (2.7) described in detail

in [28].

In our analysis of the modified geodesic equation in section 3, we started with the

simplest case of a flat Kähler target space characterized by the Kähler potential (3.15).

This case is actually interesting on its own. As mentioned at the end of subsection 3.2,

the polar multiplets ΥI and ῨĪ can be dualized into real O(2) multiplets ηI such that

the resulting hypermultiplet action is given by (3.31). This action for nH = 1 provides

the projective superspace description [15] for the classical universal hypermultiplet [45].

Combining this action with the tensor multiplet sector in (2.1), we obtain a theory of two

tensor multiplets with Lagrangian

LUHM = −κH ln H −
1

2

η2

H
(5.10)

which is (modulo sign) the projective superspace description [46] (see also [47]) of the

one-loop corrected universal hypermultiplet [48].

There are various interesting problems that can be addressed building on the results of

this paper. In particular, it is of interest to extend the analysis for the complex projective

space given in section 4 to the case of arbitrary Hermitian symmetric spaces. This should

include the derivation of closed-form expressions for the modified geodesic equation and

the hypermultiplet action SH. Such expressions are actually known if we set ϕ = 0 and

keep only the real linear superfield G of the tensor multiplet H(ζ). Then, the auxiliary field

equations (2.20) reduce to those corresponding to the non-superconformal model (2.19).

The latter are equivalent, ifM is Hermitian symmetric, to the geodesic equation (B.2). As

to the hypermultiplet action SH, it is obtained by inserting G into the integrand of (B.3).

The real challenge, however, is to extend these simple results, corresponding to the special

case H = G, to the general tensor multiplet (2.4). In the supergravity context, the local

SU(2) invariance allows one to choose the gauge H = G, see [49] for a related discussion.

But for the rigid superconformal sigma models under consideration, we have at our disposal

only rigid SU(2) transformations that cannot be used to choose the gauge ϕ = 0 (compare

with [19] where such a gauge condition was nevertheless employed).

In conclusion, we mention that our results can be used to study the dynamics of a

family of nonlinear sigma models in N = 2 anti-de Sitter superspace proposed in [50].

Such sigma models are described by the action (2.3) in which H is a background tensor

multiplet containing all the information about the anti-de Sitter supergeometry.
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A N = 2 superconformal transformations and their realization in N = 1

superspace

General 4D N = 2 superconformal projective multiplets and their superconformal cou-

plings were described in detail10 in [25], building on the earlier equivalent results in five

dimensions [51]. Here we list the N = 2 superconformal transformations of several off-shell

supermultiplets and their relization in N = 1 superspace following [25].

Let Υ[n](ζ) be an arctic weight-n multiplet,

Υ[n](ζ) =
∞
∑

n=0

Υnζn . (A.1)

Its N = 2 superconformal transformation is as follows:

δΥ[n] = −
(

ξ + λ++(ζ) ∂ζ

)

Υ[n] − n Σ(ζ)Υ[n] . (A.2)

The smile-conjugate of Υ[n](ζ) is the weight-n antarctic multiplet denoted as Ῠ[n](ζ). Its

superconformal transformation is

δῨ[n] = −
1

ζn

(

ξ + λ++(ζ) ∂ζ

)

(ζn Ῠ[n])− n Σ(ζ) Ῠ[n] . (A.3)

In the case n = 0, these transformations reduce to (3.5b).

As shown in [25], the transformation of N = 2 supermultiplets associated with the

N = 2 superconformal Killing vector ξ generates three types of transformations at the

level of N = 1 superfields. They are:

1. An arbitrary N = 1 superconformal transformation generated by

ξ = ξ = ξa∂a + ξαDα + ξ̄.
α
D̄
.

α (A.4)

such that

[ξ , Dα] = ωα
βDβ +

(

σ − 2σ̄
)

Dα , (A.5)

see [24] for more detail. The components of ξ and their descendants ωα
β and σ

correspond to the following choice of the N = 2 parameters:

ξ
∣

∣ = ξ , ωα
β
∣

∣ = ωα
β , σ

∣

∣ = σ , λ1
1
∣

∣ = σ̄ − σ , λ2
1
∣

∣ = 0 . (A.6)

2. An extended superconformal transformation generated by

ξ
∣

∣ = ραD2
α + ρ̄.

α
D̄
.

α
2 , ξα

2

∣

∣ = ρα ,

ωα
β
∣

∣ = σ
∣

∣ = λ1
1
∣

∣ = 0 , λ2
1
∣

∣ = λ11
∣

∣ = −
1

2
Dαρα . (A.7)

10Superconformal O(n) multiplets and their couplings were also studied in [52, 53], however their analysis

was restricted to deriving the conditions for invariance under the SU(2) transformations and dilations.

Unlike the more general analysis presented in [25], no results were given in [52, 53] for the most interesting

superconformal projective multiplets — the polar and tropical multiplets.
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3. A shadow chiral rotation. This is a phase transformation of θα
2 only, with θα

1 kept

unchanged, and it corresponds to the choice

ξ
∣

∣ = 0 , ωα
β
∣

∣ = λ2
1
∣

∣ = 0 , σ
∣

∣ = λ1
1
∣

∣ = −σ̄
∣

∣ = −
i

2
α . (A.8)

The spinor parameter ρα in (A.7) can be shown to obey the equations

D̄.

αρβ = 0 , D(αρβ) = 0 , (A.9)

and the latter imply

∂
.

α(αρβ) = D2ρβ = 0 . (A.10)

There are several ordinary (component) transformations generated by the chiral spinor

ρα in (A.7): (i) second Q-supersymmetry transformation (ǫα); (ii) off-diagonal SU(2)-

transformation (f = λ11|θ=0); (iii) second S-supersymmetry transformation (η̄.
α
). They

emerge as follows:

ρα(x(+), θ) = ǫα + fθα − i η̄.α x
.

αα
(+) , (A.11)

with xa
(+) the chiral extension of xa.

Consider the arctic weight-n multiplet Υ[n](ζ). Its N = 2 superconformal transforma-

tion law (A.2) generates the following N = 1 variations of the component superfields:

1. the N = 1 superconformal transformation

δΥk = −ξΥk − 2k(σ̄ − σ)Υk − 2nσΥk ; (A.12)

2. the extended superconformal transformation

δΥ0 = ρ̄.αD̄
.

αΥ1 +
1

2

(

D̄.

αρ̄
.

α
)

Υ1 , (A.13a)

δΥ1 = −ραDαΥ0 + D̄.

α

(

ρ̄
.

αΥ2

)

−
n

2

(

Dαρα

)

Υ0 , (A.13b)

δΥk = −ραDαΥk−1 + ρ̄.αD̄
.

αΥk+1

+
1

2
(k − n− 1)

(

Dαρα

)

Υk−1 +
1

2
(k + 1)

(

D̄.

α
ρ̄
.

α
)

Υk+1 , k > 1 ; (A.13c)

3. the shadow chiral rotation

δΥk = iα(k −
n

2
)Υk . (A.14)

Choosing n = 0 in the above relations, one obtains the transformations of the dynamical

superfields Φ := Υ0 and Σ := Υ1 of the weight-zero arctic multiplet Υ.

Consider the tensor multiplet H(ζ), eq. (2.4). Its N = 2 superconformal transforma-

tion law (3.5a) generates the following N = 1 transformations of the component superfields:

1. the N = 1 superconformal transformation

δϕ = −ξϕ− 4σϕ , δG = −ξG− 2(σ + σ̄)G ; (A.15)
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2. the extended superconformal transformation

δϕ = ρ̄.
α
D̄
.

αG +
1

2

(

D̄.

α
ρ̄
.

α
)

G , (A.16a)

δG = −ραDαϕ− ρ̄.
α
D̄
.

αϕ̄−
(

(Dαρα)ϕ +
(

D̄.

α
ρ̄
.

α
)

ϕ̄
)

; (A.16b)

3. the shadow chiral rotation

δϕ = −iαϕ , δG = 0 . (A.17)

B Supersymmetric sigma models on tangent bundles of Hermitian sym-

metric spaces

This appendix contains a summary of several results obtained in a series of papers [34, 35,

37–40] devoted to the study of N = 2 supersymmetric sigma models of the form (2.19),

where K(Φ, Φ̄) is the Kähler potential of a Hermitian symmetric space, and therefore the

corresponding curvature tensor is covariantly constant,

∇LRI1J̄1I2J̄2
= ∇̄L̄RI1J̄1I2J̄2

= 0 . (B.1)

In such a model, the auxiliary field equations are equivalent to the geodesic equation with

complex evolution parameter [34, 35]

d2ΥI(ζ)

dζ2
+ ΓI

JK

(

Υ(ζ), Φ̄
) dΥJ(ζ)

dζ

dΥK(ζ)

dζ
= 0 . (B.2)

Upon elimination of the auxiliary superfields, the action (2.19) can be shown to take the

form [39]:

S[Υ∗(ζ)] =

∫

d4xd4θ

{

K
(

Φ, Φ̄
)

−
1

2
ΣTg

ln
(1+ RΣ,Σ̄

)

RΣ,Σ̄

Σ

}

, Σ :=

(

ΣI

Σ̄Ī

)

, (B.3)

where

RΣ,Σ̄ :=

(

0 (RΣ)I J̄

(RΣ̄)Ī J 0

)

, (RΣ)I J̄ :=
1

2
RK

I
LJ̄ ΣKΣL , (RΣ̄)Ī J := (RΣ)I J̄ , (B.4)

and

g :=

(

0 gIJ̄

gĪJ 0

)

. (B.5)

Here Υ∗(ζ) denotes the unique solution of equation (B.2) under the initial conditions (2.21).

A different universal representation for the action S[Υ∗(ζ)] can be found in [38].
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